“费马……大定理?”

阿达民的话,让莱斯利兰伯特很意外,他愣了一会儿才想起自己是为何而疑惑。

这位阿达民先生,他不知道“费马大定理”已经被证明了吗,但即便如此,自己要不要直言相告,冒这样的风险去揭短呢。

这边还在犹豫,线路另一头,asa的提醒已做了这样一件事。

“哦,是这样,‘费马大定理’已经被人类证明过了。

那么换一个待解决的猜想,怎么样,兰伯特先生,我们咨询一下数学家们,或者从数据库里找几个难度较高的猜想,让‘二号机’尝试证明一下,这是否能验证,‘混沌’系统的能力究竟如何。”

“理论上讲,这样做是有一定的价值。”

所谓当局者迷,身在“强人工智能”研发组,从一开始就瞄准自主思维的设计目标,长期以来莱斯利兰伯特所想的,几乎都是如何让ai具备自主思维,创造性、探索性研究的能力,而几乎没考虑过别的。

不过,接触这一设想后,凭借自己对“混沌”系统的观察,兰伯特还是不自觉的在屏幕前摇一摇头,他并不认为现在的“混沌”能解决多么高深的数学问题。

从数论中的一个普通结论,到长久未解决的猜想,难度究竟差多少。

这问题,别说普通民众,即便在数学领域摸爬滚打多年的研究者,也不一定能给出准确的回答,甚至往往要等到猜想被解决后,才能有一个相对准确、公允的评价,然而此时猜想已经被解决,这种回答的价值,自然也近乎于零。

身为一名数学领域的涉猎者,在这方面,莱斯利兰伯特凑巧有详细的观察与思考。

权衡利弊后,他直接向阿达民指出,所谓“选择高难度的猜想”,这一设定本身就包含极大的不确定性:数学猜想的“难度”,并无绝对标准,而几乎完由研究者的数量、水平,和猜想屹立的时间长短来决定。

譬如著名的“费马大定理”,从西历1092年提出,到西历1450年解决,包括欧拉、柯西、高斯、勒贝格等著名数学家都牵扯其中。

这么多顶尖头脑的努力,前后也经历了三百多年时间,才最终将其证明。

这样的现实,在费马大定理被证明之前,的确可以作为很有利的论据,证明这一定理(其实应该用“猜想”)的难度之高。

但是这一原则,很显然,并无法应用到所有的数学结论、猜想之上。

现代数学,已经发展到怎样的程度,兰伯特略知一二,他很清楚数学这一棵参天大树,现如今是怎样的枝繁叶茂。

具体到每一个分支,又有近乎无数的研究成果与未解之谜,即便动员旧时代的所有数学家,殚精竭虑,也绝无可能针对每一个猜想、结论都展开详尽而长久的研究,因而也不可能凭借“研究者数量、水平、时长”的大原则,判断问题的难度。

道理很简单,人类根本没有这么多顶尖人才,仅有的人才,也断然无法将所有时间精力耗费在理论研究、猜想证明上。

浩如烟海的数学领域中,会埋伏着多少无人问津的猜想、结论、命题。

所有这些命题,其中,必定有一些难度极高,甚至远远超越人类现有知识的存在,但因为无人关注,甚至无人发现,对其实际难度,人类根本就一无所知。

不仅如此,从另外一个角度,哪怕对于那些流行于世、知名度极高的数学猜想,要在这些猜想被数学家证明/证伪之前,判断其难度,事实上也相当于一种“未卜先知”,根本是不切实际的幻想。

很多数学猜想,譬如“哥德巴赫猜想”就属于这一类,迄今为止,数学家们掌握的手段,都只能迫近、而无法将其解决。

这意味着,要么“哥德巴赫猜想”无法被证明/证伪,要么就需要一些崭新的数学研究成果、理论,不论哪一种,今天的数学家们都无从判断,更谈不上给出一个具体的时间/工作量预测,最后,只能认定其难度的下限,而无法判断其上限。

除此之外,另有一些猜想,譬如已经被安德鲁怀尔斯证明的“费马大定理”,在最终被证明前的若干年,就有一定的迹象显示其“很有可能被解决”。

即便如此,作为投入进攻的数学家,安德鲁怀尔斯本人在一开始也必定没有十成把握。

事实上,但凡在开始工作之前,有足以判断该猜想之难度的所谓“十成把握”,当事者立即就可以宣称自己已解决了该猜想,接下来,只要潜心完善证明过程即可,这是数学界时常出现、公认有效的做法。

总结起来,对一个尚未解决的数学猜想,不论是否有思路,都无法准确判断其难度,这才是实际情况。

既然是用来验证“混沌”系统的能力,难度未知的猜想,就不是一种合适的题材。

尽管如此,阿达民提出的设想,兰伯特还是不想直接拒绝,想一想反正也没关系,就应承下来,比较随意的选择“黎曼猜想”送入二号机。

论说起来,具有一百多年历史的“黎曼猜想”,显然也不是好啃的硬骨头。

西历1497年4月10日,“强人工智能二号机”接到外部指令,尝试解析



本章未完,点击下一页继续阅读